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1. INTRODUCTION

In recent years much emphasis has been in evidence on re-

- search and development of non-contact suspensions for tracked-

levitated vehicles [1-5].* Advanced suspension copcepts are

necessary to proviae the desired degree of passenger comfort

and acceptable levels of ride quality. Fluid and attractive

and repulsive magnetic suspensions have been considered in both

the USA and abroad [6-9] for this purpose. The main focus of

the present paper is on attractive ferromagnetic suspension,

which can operate with low noise levels, low pollution, and

reasonable energy efficiency [10].

Several reports and technical papers [11-22] have addressed

the problem of ferromagentic suspensions. Basically, there are

two types of magnetic suspensions currently under development

and further investigation [23]. One is the "repulsive" type

in which superconducting magnets are used on board. These

magnets, in conjunction with vehicle forward speed, produce

eddy currents in the conducting guideway, and thus produce

levitation by repulsion. Since there is no lift while

stationary, the vehicle is supported by wheels at low speeds.
(

Initially, the lift force increases with an increase in

speed and finally levels-off at lift off speeds of 40-80

mi/hr [22]. The typical gap sizes and operating speeds are,

respectively, 4-8 inches and 180-300 mi/hr .

*Numbers in square brackets designate Reference items at the
end of text in this report.

- 1 -



In the "attractive" c..oncept, conventional electromagnets,

located on the vehicle, are suspended below a steel track,

- thus providing an attractive force between the track and the

vehicle. Since the configuration is inherently unstable, the

position of the magnets relative to the track is monitored on

a continuous basis and active feedback control is employed to

insure stability. The suspension achieves ~ts maximum lift at

zero speed, and. at higher speeds the lift force is degraded

due to generation of eddy currents in the track. In order

to operate with a reasonable amount of power, the nominal gap

is maintained at a much smaller value than the "repulsion"

type of suspension. In general, the operating speeds are also

lower in this case. Typical range of nominal gap values is

0.4-0.8 in.

In addition to levitation, guidance is also provided by

the magnets. In one configuration, separate magnets are used

for vertical support and lateral guidance. The levitation and

guidance £orces are essentially normal to the pole faces. In

another configuration, simultaneous lift and guidance functions

are provided by both primary and fjinging fields [22]. The

forces are tangential and normal to the pole faces in this case,

and an inverted V-shaped rail is used instead of a flat rail.

The control strategy used for this configuration requires that

the magnet pairs are staggered relative to rail centerline

so that lift and guidance forces may be controlled independently

(see Figure 1-1).

- 2 -
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VEHICLE

GUIDANCE MAGNET

.~

~~ --LIFT MAGNET

a) SEPARATE LIFT AND GUIDANCE

INVERTED-U
RAIL

STAGGERED
MAGNETS

b) COMBINED LIFT AND GUIDANCE

FIGURE 1-1. CANDIDATE CONFIGURATIONS FOR GUIDANCE USING
FERROMAGNETIC SUSPENSION
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The work reported in Reference 4 examines the relative

advantages of combined versus separate lift and guidance. It

was found that for a guidance-to-lift ratio in the range of

0.5, combining the lift and guidance functions into one set

of magents results in a system which is about 20 percent

lighter than a system using separate magnets. For higher

guidance-to-lift ratios the separate system -tends to become

advantageous, whereas for lower ratios the advantage of com

bined magnets becomes greater. Thus there is a particular

interest in determining just what guidance force capability

is required from a magnetic suspension. The present study of

aerodynamic gust response is primarily motivated by this issue.

Some research has gone into aerodynamic side gust forces

of ground vehicles [24, 25] and wind tunnel tests have been

conducted on scaled-down models.

This report deals with dynamic modeling and response of

magnetically levitated vehicles entering aerodynamic side

gust fields. A two-degree-of-freedom dynamic model is

formulated and computation of dynamic forces and moments is

shown for three different vehicle speeds. Piecewise straight

line approximations are used for representation of both force

and moment curves in computer simulations. Peak displacement,

acceleration and guidance-to-lift ratio are computed for three

vehicle speeds. Results are discussed and recommendations are

made for further work.

- 4 -
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1.1 VEHICLE DYNAMIC MODEL

The vehicle model considered in this report is a two

degree-of-freedom system, in which both sway and yaw motions

are included. The model represents a-finite length vehicle

shown in Figure 1. The vehicle is assumed to act as a rigid

body with a uniform mass distribution. Length of the vehicle

is 2 ~v and the suspension magnets are assumed to be located

at a distance of ~ on either end of the center. Nose length

of the vehicle is ~l. The symbol y denotes the sway motion,

and IjJ represents yaw.

The vehicle, traveling at a velocity of V, penetrates a

region containing a stationary crosswind gust of velocity Vc '

as shown in Figure 1-2. The model is assumed to be decoupled in

the yaw and sway modes. This assumption is justified in view

of the use of active control £or vehiclesuspensions[26]. In

the present analysis it is assumed that a linear. control law

incorporating position, velocity and acceleration feedback is

us~d leading to an increase in the vehicles' effective mass and

a minimization of the yaw-sway coupling [27]. Also, with this

control strategy an arbitrary natural frequency and damping

ratio can be chosen by using appropriate values of controller

gains.

1.2 EQUATION OF MOTION

The vehicle is assumed to be subjected to aer~dynamic

crosswind gust loading while travelling at a constant vehicle

of V mi Ihr Since this analysis is primarily

- 5 -
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'.

concerned with the dynamic response of the vehicle to aero-

dynamic loads, the effect of guideway irregularities is

neglected. It is assumed that motions due to such irregu

larities are small compared to the gust-induced motions.

In canonical form, the equations of motion in sway

and'yaw modes can be written as:

" .

sway: (52 + 21; w 5 + '}y) Y =y y

Faero
rna

(1)

yaw:

where,

(2)

= vehicle apparent mass

~ = damping ratio in sway mode

Ul
Y

Y

= natural frequency in sway mode

= sway (lateral) displacement

F = .aerodynamic load in lateral directionaero

I a = vehicle apparent moment of inertia

r;;1iJ = damping ratio ln yaw mode

wliJ = natural frequency in yaw mode

1J! = yaw displacement

Mz = aerodynamic torque on the vehicle

s = Laplace operator

These equations can be expressed, using the state variable

formulation, as a system of four first-order differential

equations. Defining:

- 7 -
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Y1 = Y. .
YZ = ) = Y1 (3 )

Y3 = l/J

and
. .

Y4 = IjJ = Y3

the equations become

·Y1 = YZ

Z
F "r:· aero

YZ = w
Y Yl - (Z ~Y WyJ Yz + ma

· (4)
Y3 = Y4

2
M

· (Z~l/J~)Y4
z

Y4 = wl/JY 3
- +

~

i. e. , :.

Y1
0 1 0 0 Y1

d -w 2 - Z~Y tIly 0 0 YZ
dt YZ Y

=
Y3

0 0 0 1 Y3

I 0 0
Z - Z~1jJ wljJY4 -~ Y4

0

F 1maero a,

+ ( 5)
0 '"

M IIz a

.

-, 8 -



'0.

The parameters w and ~ . can be selected on the basisy y

of specific design considerations. Corresponding parameters

w~ and ~~ can be obtained from the vehicle configuration as

follows. Assuming,

2K = equivalent stiffness of magnetic suspension

2b = equivalent damping of magnetic suspension

m = vehicle mass

I = vehicle mass moment of inertia

F = lateral suspension force

observe that

,",

for a vehicle with uniformly distributed mass

I 1
C2£v)2 1 m£ 2

= Urn = 3" v

KlJ! = T F C2£) e:) n Z
~

= (y 79,)
= .'-

= 2K£2

Therefore,

(6)

( 7)

( 8)

(9)

=.j ~~:2 =.jZ: V3(~~Y

= WY(/v)/3

- 9 -



(10 )

A similar relationship can be derived for the damping ratios

~w and ~y as shown below. Observe that

and

1r;; =-
Y 2

1
~ =-

1); 2

1= "2

1= "2

(2b)

I m(2K)

~
IT

v ... K1);

2b

Im(2K)
. (£;) 13

(12)

= l,;y (££v) 13

= 1. 732 (£~) l,;y

1.3 COMPUTATION OF MAGNET FORCES

(13)

The force exerted by the magnetic suspension can be com-

puted by observing that the inertial force is the djfference

between the aerodynamic force, which is externally applied to

- 10 -



the vehicle, and the restoring force exerted by the magnetic

suspension. The magnetic suspension force has two co~ponents:

one is contribut~d by sway, and the other by yaw. These two

components can be calculated as follows:

my = F - F
aero mages)

(14 )

= magnetic suspension force in sway, and the otherwhere F
mages)

terms have been defined previously. Solving for F gives
mages)

F = Faero my
mages)

2 2 2= ma ( S + 2 zy wys + wy ) y - mS y

= [em -m)s2 + m (2 S w )s + m w2] ya a y yay

(15 )

A similar relation may be developed for the yaw motions.

The total force due to magnetic suspension is

F = F
mag mages)

+ F
mag(y)

1,16 )

= [(m - m) s 2 + m (2 1;; w) S + ma w,~ ] ya a y y y

+
(17)

'f . l'S' by the ratio of F .The guidance-to-l1 t ratIo gIven mag

to the vehicle weight parameter. In the present analysis the

apparent mass factor is defined as the ratio of rna; the apparent

mass of the vehicle, (the increase in actual mass of the vehicle

resulting from the use of acceleration feedback in control),

and the actual vehicle mass.
- 11 -



1.4 VEHICLE AERODYNAMIC'FORCES AND MOMENTS

A9rodynamic gust loading can be important for operating

speeds of magnetically levitated vehicle configurations pre-

sently under consideration. For example, protection against

gust loads may become a critical factor in suspension design

and control strategy selections. The aerodynamic loading

depends upon vehicle profile and guideway contour, speed of

wind, and the direction of flow.

Several procedures have appeard in the literature [28-33]

for computation of aerodynamic loading due to wind gusts.

The most important loads for suspension design consist of the

side force and the yaw moments which are given by

",

F = C Sq l18 )aero y .
Mz = C Sf vq (19)

n

where

S = reference area presented to the wind

q = dynamic pressure, which is a function of air

density, and vehicle crosswind relative velocity

£ = length of the vehiclev

Cy = Force coefficient

Cn = Moment coefficient

The aeroaynamic loading is assumed to consist of two parts:

one the non -vi scous, slender body part; th e other,- the

vi s cous, cro s s fl ow part [34]., The carre sponding s ide force

and yaw moment equations can be expressed as:

- 12 -
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Faero = qSCcyfs
+ C )

Yc
C2 0)

where

.Mz l21)

.'

Cyfs = side force coefficient due to slender-body part

Cy = side force coefficient due to crossf1ow
c

C = yaw moment coefficient due to slender body partnfs
C = yaw moment coefficient due to crossflown c

the relative wind velocity is given by

(22)

for a vehicle moving at a speed V entering a crosswind gust -

of velocity Vc . The wind impacts the vehicle at the side slip

angle 6 given by

6 = tan -1 (Vc /V ) C23)

The reference area S presented to the wind is a function

of the vehicle height HV' and for the cross-sectiona~ shape

chosen in the present analysis is given by

S =. liT I 2) H~

The dynamic pressure q is given by

1 V2q = 2" p r

for air density p and relative windspeed Yr·

- 13 -

(24)

(.25 r



For the slender-body force and moment coefficients, the fo1low- ~

ing expressions are provided [34].

and

C
Yfs =

213x (2-x)

26

x < 1

x > 1 l26) "

where

= 1
2"

26(Al/A)X2Cl-2X/3)

26LA I /AJ/3

x < 1

x > 1 (27)

x = Vt/.Il.. 1

t" = time after gust entry begins

.Il.. l = length of nose section of the vehicle

~-1 = i 1/Hv

A = i /Hv v

The viscous cross-flow part of (20) and (21) is due to

the fact that flow separates off the side of the vehicle,

producing contributions to the force and moment which become

increasingly important at higher crosswind angles. The

analytical method for computing these contributions follows

the analysis by Bryson [35], who considered symmetric vortex

(28)

separation on circular cylinders. This geometry ar?lies

directly to the case of a vehicle body of semicircular cross-

- 14 '"
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section near the ground, as shown in. Figure 1-3. In a coordinate

system fiied to the fluid, the penetration of ~ cross-sectional

plane by the body causes an unsteady motion. At early

instants of time, corresponding to the front of the body,

the vortices (i.e:, the real vortex and the imaginary~vortex)

are located near the separation points and do not cause a

large-force. At later times, the vortices grow in strength

and move downstream, thus causing an increasingly large

suction force on the corresponding ~ross-section of the body.

As these vortices pass further downstream, the force then

decreases. Bryson's theory indicates the net force would

go to zero, but a simple and useful modification is to

assume the force never drops below the measured steady-state

value for the drag on a circular cylinder. The result is

the Modified-Bryson functiong(a) shown in Figure 1-4. This

function is used to predict forces and moments as prescribed

in [34]*:

c.yc =

g(O) do

g (0) do

z < 1

z > 1 (29)

*These equatJ.ons for the stationary gust can be obtained from
[30J by simply eliminating the unsteady terms due to immersion
in the sudden gu~t field.
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and
<,

where,

z = Vt/ 'l v

S\

1 crg(cr)dcr

:z < 1

:z > 1 (30)

(31)

k = configuration factor (used as unity in the present

analysis)

g(cr) = modified-B~yson function plotted in Figure 1-4.

The configuration factor k was taken as unity because

this value was found to give the best correlation with

experimental data [31].

Figure 1-4 shows the modified Bryson ofunction and has

two curves, the dotted line portion corresponding to

laminar, and the solid line portion corresponding to

turbulent flow [30]. The selection of the appropriate curve

is made based upon whether the boundary layer on the body

is laminar or turbulent. In most instances the solid-line

portion is used except for models in wind tunnels tested at

- 18 -
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subcritical crossflow Reynolds numbers. The configuration

factor k incorporates the effects of body cross-section and

nose profile.

Using the following vehicle parameters, aerodynamic

force and moment computations were made for three vehicle

speeds of 150, 240 and 300 mi/hr.

vehicle length = 94.2 ft

nose length = 15.3 ft

vehicle maximum height = 10.7 ft

crosswind speed = 60 milhr

The computed values of force and moment are given in

Tables 1-1, 1-2 and 1-3 for the case of three vehicle

speeds. Corresponding plots are shown in Figures 1-5 and

1-6.

It will be noted that the aerodynamic side force in

creases from zero to a final maximum value as the vehi~le

enters into the side gust field. The rate of increase depends

upon vehicle velocity. Similarly, the yawing moment increases

rapidly from zero to some, large value, remains relatively

constant for a short duration and then decreases to a tinai

steady-state value. The higher the vehicle speed, the faster

is the rise in yawing moment.

- 19 -



TABLE I-I. AERODYNAMIC FORCES AND-MOMENTS AT VEHICLE SPEED ,t",'

OF 150 MPH

I'

t (SEC) F (LB) Mz(FT-LB)aero

0.000 O. o.

0.0200 3,800 24,776

0.0400 5,200 187,497

0.0600 6,900 387,700
'';?

0.0695 7,400 388,920

0.1000 7,800 394,832

0.2000 9,100 410,467

0.3000 11,200 392,996
;

0.4000 14,800 306,805

0.4288 16,500 265,202
~

0.5000 16,500 265,202

0.6000 16,500 265,202

0.7000 16,500 265,202

0.8000 16,500 265,202

0.9000 16,500 265,202

1.0000 16,500 265,202

..~'
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TABLE 1-2. AERODYNAMIC FORCES AND MOMENTS AT VEHICLE
SPEED OF 240 MPH

~

t FaeroCLB.) MzCFT-LB)

0.0 0 0

0.01 5,617 2,59,846

0.02 9,785 4,45,298

0.04 13, 796 6,40,196

0.10 14,438 6,29,574

0.15 15,252 6,31,631

0.20 16,392 6,14,153"

0.25 17,857 5,67,023

0.2676 18,452 5,40,943

0.30 ·18,452 5,40,943
'~

0.50 18,452 5,40,943

0.70 18,452 5,40,943

1. 00 18,452 5,40,943

..
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2.. FORCE AND MOMENT APPROXIMATION

For the purposes of dynamic simulation, the force and

moment temporal plots were represented by four-segment·

piecewise linear approximations. Figure 2-1 shows such

approximations for a vehicle speed of 150 mi/hr. Using

this technique, linear relationships can be derived to

express analytically the time dependence of side force

and yawing moment. Values shown in parentheses in Figure

2-1 represent break-point values. For the case i11us-

trated (i.e., 150 mi/hr) the following relationships

are obtained:

(A) SIDE FORCE

Segment 1:

slope k1

Faero

Segment 2:

slope k 2

° < t < 0.06

= (7.6 x 10 3)/0.06 = 126,666

= k t
1

0.06 < t < 0.3

= (11.0-7.6) x 10 3/(0.3-0.06)

Faero

Segment 3:

slope k3

Faero

= 14,167

= k Z(t-O.06) + 7,600

0.4286 ~ t ~ 0.3

= (16.5-11) x 10 3/(0.428-0.3)

= 5.5 x 10 3/0.128

= 42,969

= k 3 (t-O.3) + 11,000

- 25 -
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Segment 4: t > 0.428

Fae~o = 16,500 lb.

Similarly, four-segment straight line representations can be

obtained for the yawing moment curve.

(B) - YAWING MOMENT

Segment 1: 0 < t < 0.06

slope k1 = (3.97 x 10 5)/0.06

"- 66.167 x 105

Mz = kIt

Segment 2: 0.06 < t < 0.3

slope k2 = (4.11-3.97) x 10 5/(0.3-0.06)

0.14 5= x 10 /0.24

= 0.58333 x 105

s Mz = k2(t-0.06) + 3.97 x 105

Segment 3 : 0.30 < t < 0.428

slope k 3 = (2.65-4.11) x 10 5/(0.428-0.3)

= -1.46 x 10 5/0.128

= -11.406 x 105

..

M = k 3(t-0.3) + 4.11 x 105
z

Segement 4 : t > 0.428

Mz = 2.65 x 10 5

2.1 DYNAMIC SH1ULATION

The differential equations representing the dynamics of

the magnetically suspended vehicle system were si~ulated on

the 'DEC-20 digital computer ,available at the TSC Computation

Center. Subprogram I; DYSYS (DYnamic SYstem ~imu1ation) [36],

- 27 -



originally developed at M.I.T., was modified for application

to the system under consideration. The program is designed to

solve a system of first-order differential equations using a

fourth-order Runge-Kutta integration algorithm. The equations

are included in subroutine EQSIM (~uation SIMulator) which

is called four times for each integration time step.

The t'ollowing quantities were calculated using the

computer program:

(1) lateral displacement and velocity

(2) yaw displacement and velocity

(3) total displacement at front of the vehicle

(4) total acceleration at front of the vehicle

(5) guidance-to-lift ratio.

2.2 RESULTS AND DISCUSSION

Digital computer simulations were run for the vehicle

suspension system using the following parametric values:

.....

vehicle weight

vehicle length

location of magnetic suspension from

ends

length of nose section

maximum height

- 28 -
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lateral natural frequency

lateral damping ratio

wind gust velocity

1.50 Hz

0.707

60 mi/hr

I

~

For each of vehicle speed values set at 150, 240, and

300 mi/hr, computational runs were made for apparent mass

factors of 1, 2, and 3. The mass factor reflects the effect

of acceleration feedback used in the control scheme for the

magnetic suspension. - An increase in speed of the vehicle,

for a fixed wind gust velocity, leads to a decrease in side

slip angle S.

Table 2-1 shows the summary of principal. results obtained

on the basis of the present analysis. Output information on

transient response is.plotted for vehicle speeds of 150, 240,

and 300 mi/hr in Figures 2-2, 2-3, and 2-4, respectively.

Each ·of the figures is shown for a different apparent mass

factor to emphasize the behavior of various variables. At

different mass factors it will be noted that similarity

exists in various corresponding plots.

Displacement is computed near the front end of vehicle

at the loc~tion of the magnetic suspension. This displacement

i.s a combination of lateral and yaw effects. It increases

rapidly as the-vehicle enters; the gust field, and eventually

attains a steady-state value after few minor 6scillations.

Acceleration is also computed near the vehicle front end

at the location of magnetic suspension. It represents the

effects of both lateral and yaw accelerations. As will be

- 29 -



TABLE 2-1. SUMMARY OF RESULTS
(PEAK VALUES OF VARIABLES)

-,........
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~ ~ DI SPLACEMENT
..-o.~ FT

MAXIMUM
ACCELERATION

FT/SEC2
GUIDANCE-TO
LIFT RATIO

w
a
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noted from the figures, it rises rapidly, approaching a sharp

peak and then decreases rapidly to a negative value. Eventual

ly, the acceleration reaches a zero value at steady-state

conditions.

The guidance to lift ratio is obtained by evaluating the

l~teral force exerted by magnetic suspension and dividing it

by the vehicle weight. A relatively small guidance force is

required initially as the vehicle enters the gust field;

however, as time ,progresses, higher and higher values of guid

ance forces are required until a peak asymptotic value is

reached. The guidance-to-lift ratio is maintained essentially

at this constant value until a steady-state condition is

reached.

Figures 2-5, 2-6,and 2-7 represent the temporal descriptiPn

. of displacement and acceleration variables at vehicle front

end, and guidance-to-lift ratio for various apparent mass

factors. For these simulations vehicle speed was maintained

constant at 240 mi/hr. All curves show a similar

trend for different apparent mass factors. Also, the steady

state value of displacements decreases with an increase in

apparent mass factor, becoming approximately one-third for

an apparent mass factor of 3 and one-half for the apparent

mass factor of 2 as compared to the steady-state value

corresponding to the apparent mass factor of unity~. Similar

behavior is observed for the peak values of acceleration.

However, the steady-state values of acceleration for all
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values of 'apparent mass factors is zero. The variation of

guidance-to-lift ratio with time is similar to the 3

apparent mass factors considered. The three curves closely

follow one another.

Figure 2-8 shows the vehicle peak lateral excursions at

the location of magnetic suspension near the front end.

These excursions increase with an increase in vehicle speed,

although their values decrease as the apparent mass factor

increases. Thus an increase in apparent mass factor has a

positive influence toward improving the ride quality.

Figure 2-9 presents the same information on peak vehicle dis

placement in parameter space.

'Figure 2-10 shows the variation of peak acceleration at

the front end of the vehicle with a change in vehicle speed.

As in the case of displacement, the value of peak acceleration

increases with an increase in vehicle speed. Also, an in

crease in apparent mass factor causes a decrease in peak

acceleration. For example, at vehicle speed of 300 mi/hr,

for apparent mass factor of 3 the peak acceleration

is reduced to 33% of the peak acceleration when the apparent

mass factor is one, and for apparent mass factor of 2, the

corresponding value is reduced to 50%. Thus an increase in

apparent mass factor again shows an improvement in ride

quality by causing a reduction in peak acceleration levels.
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Finally, Figure 2-11 shows the change in peak values of

guidance-to-lift ratios with a change in vehi~le speed. As

in the other two cases, the peak values increase with an

increase in vehicle speed. Although the peak guidance-to-

lift ratio decreases with an increase in apparent mass factor,

when the vehicle speed is maintained constant, the change in

peak values is not as significant as in the case of displace-

ment or acceleration.

- 42 -



• cj • II...' " • "

300200
0.3 1 ~ 1

100 1

APPARENT MASS
FACTOR

o.sr
/ .?

0 1

/:),. 2

0 I / IJi
J

0 3H

E-<

~
E--<
u...
H

H

0
E-<

~ 0.4
w r-ll

U
Z
o::r:
~
H

:::>
t.'J

:::.:::
o::r:
r-ll
p..

VEHICLE SPEED (MPH)

FIGURE 2-11. PEAK GUIDANCE-TO-LIFT RATIO VS. VEHICLE SPEED



3. CONCLUSIONS

In this report a two-degree-of-freedom dynamic model

for a magnetically levitated finite length vehicle has been

presented. The model has been parametrically evaluated for

various speeds ranging from 150 to 300 mi/hr, for crosswind

gusts at 60 mi/hr. For the chosen set of vehicle parameters,

aerodynamic force and moment were computed at various vehicle

speeds. Piecewise linear approximation of force and moment

curves were obtained. Digital computer simulations were run

to compute peak displacement and acceleration levels at the

vehicle front end, and guidance-to-lift ratio for 3 apparent

mass ratios.

The following conclusions can be reached on the basis

of analysis presented in this report:

1. Apparent mass factor is an important parameter in

that it can reduce the lateral excursions and peak vehicle

displacements in a significant manner. Higher apparent mass

factors lead to lower peak accelerations and displacements.

2. Forces and moments arising from aerodynamic gusts

can present excessive loads on the vehicle and must be taken

into account while designing vehicle suspension systems.

3. Yaw motions can contribute to excessive total lateral

displacement and accelerations, and should be considered in

any analysis and design.
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RECOMMENDATIONS

The present analysis assumed the magnetic suspensions to

be located close to the vehicle ends. The effect of several

suspension blocks located uniformly along the length of the

vehicle should be considered. Lateral guidance-to-lift ratio

should be computed for such a configuration.

It has been shown in the present analysis that an in

crease in apparent mass .of the vehicle has a beneficial effect

in that the displacements and acceleration values are reduced

at operating speeds. This should be further investigated and

the limiting value of apparent mass from both practical and

operational viewpoints should be established .
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